Abdel Fattah, Abde Rahman Mechanical forces enhance patterning in human neural tube organoids	46
Akhmanova, Maria The effect of epithelial cell divisions on tissue invasion by macrophages in the Drosophila embryo	47
Albrecht, Marco Modelling irregular fibrous tissues with deformable porous media	48
Aloisio, Francesca Arp2/3 Complex Activity Times Stage Transition for Embryonic Stem Cell Differentiation	49
Amiri, Aboutaleb Mechanics of epithelial morphogenesis	50
Arraf, Alaa Presenter: Schultheiss, Tom A novel hedgehog-regulated molecular module that shapes epithelial cell and tissue morphogenesis to position the ventral embryonic midline	51
Bailles, Anaïs Mechanically-driven propagation of a wave of Myosin II activation in the Drosophila endoderm	52
Baratchi, Sara Shear stress controls the membrane expression and function of mechanosensitive ion channel TRPV4	53
Bolea Albero, Antonio Release of global compressive stress via local "mechanical sinks" drives epithelial folding during Drosophila gastrulation	54
Bouchard, Maxime Morphogenetic apoptosis as a driver of ureter maturation in the mouse	55

Caballero-Mancebo, Silvia Actin-dependent contraction drives ooplasmic segregation in ascidian oocytes	56
Camacho de la Macorra, Carlos Characterization of Yap/Taz-Tead activity as mechano-transducer of the morphogenesis of the vertebrate retinal pigmented epithelium.	57
Chan, Chii Interplay between tissue mechanics and fate specification during early mouse embryogenesis	58
Chatterjee, Saptarshi Mechanistic model predicts perinuclear positioning of centrosome in interphase cell	59
Cheong, Sek-Shir Disruption of the planar cell polarity (PCP) component Vangl2 alters cell mechanics in loop-tail mice	60
Correia, Andreia Going big: Unraveling the mechanisms of macrophage multinucleation	61
Darby, Daniel A Mechanism of Oriented Cell Division Underlying Cardiac Chamber Expansion	62
Dent, Lucas The dPix-Git complex is essential to coordinate epithelial morphogenesis and regulate myosin during Drosophila egg chamber development	63
Dent, Lucas Systems level identification of protein networks determining mechanical control of the cell cycle in melanoma	64
Diz-Muñoz, Alba Presenter: Sanchez-Iranzo, Hector Fate determination in the zebrafish notochord	65

Dubey, Sushil The axonal actin-spectrin lattice acts as a shock absorber to protect neurons from stretch-induced damage	66
Duclut, Charlie Fluid pumping and active flexoelectricity can promote lumen nucleation in cell assemblies	67
Dupont, Sirio Extracellular matrix mechanical cues regulate lipid metabolism through Lipin-1 and SREBP	68
Eckert, Julia Approach to measure the Intracellular Stress of Cell-Cell Junctions	69
Ernst, Alexander Actomyosin dynamics and the Bmp pathway drive apical extrusion of proepicardial cells	70
Fiore, Vince Extracellular matrix and differentiated tissue mechanics cooperate to shape tumor architecture	71
Font-Reverter, Jordi Modeling Epithelial Tissues as Active Fluids	72
Foster, Sarah Chemical and mechanical signals interact to direct axon growth	73
Fuhrmann, Jana Understanding the formation of three dimensional shape during epithelial morphogenesis	74
Fürst, Carina Characterization of novel mechanosensitive cell populations during murine embryonic development	75
Galea, Gabriel Vangl2 recruits apical non-muscle myosin to drive mammalian neuroepithelial constriction	76

Gamez, Carolina Mechanical stimuli induce recruitment of cells	mesenchymal stromal/stem	77
Ghanbarzadeh Nodehi, Sedigheh Theoretical modeling for mechanical wav and nuclear membranes	ve propagation between cellular	78
Gonçalves, Margarida Drosophila RNAi screen to uncover the i epithelial cytokinesis efficiency	mpact of cell adhesion on	79
<u> </u>	Presenter: Greig, Joshua; Bulgakova, Natalia	
Tissue response to anisotropic mechanic development of the Drosophila epidermis	cal forces during the	80
Gryadunova, Anna Structural Determinants of Biomechanica	al Properties of Chondrospheres	81
Gryadunova, Anna Estimation of Biomechanical Properties of Tensiometry	of Tissue Spheroids:	82
Guillon, Emilie Inter-tissue adhesion and the mechanics development	s of early spinal column	83
Halonen, Heidi High frequency mechanical vibration reg osteogenesis and mechanotransduction stem cells culture medium and adhesion	of human adipose-derived	84
Häring, Matthias Mechano-sensitive ion channels mediate cells during morphogenesis	e the coordination of epithelial	85
Härtter, Daniel The amnioserosa in numbers: quantificate closure using convolutional neural netwo		86

Hassan, Abeer Muscle-Neuron mechanical coupling: the proprioception	ne role of ECM mechanics in	87
Heilmann, Silja Pancreatic plexus remodeling through I	oop closure:	88
Herrmann, Anne Interkinetic nuclear migration - a stocha tissue architecture	astic process constrained by	89
Hirashima, Tsuyoshi Mechano-chemical coupling via ERK si morphogenesis of lung epithelial sheet	gnal for repetitive branching	90
Hoijman, Esteban Epithelial cells perform phagocytic clea acting as mechanical loaders	rance in the early embryo by	91
Hosseini, Kamran	Presenter: Fischer-Friedrich, Elisabet	h
EMT-induced cell mechanical changes strength	enhance mitotic rounding	92
Housman, Genevieve Development of a comparative primate skeletal cell culture model to study gene expression responses to mechanical strain		
lyer, K. Venkatesan Epithelial viscoelasticity is regulated by turnover	mechanosensitive E-Cadherin	94
Jain, Akanksha Cell rearrangements driven by an actor gap closure of Tribolium serosa	nyosin cable result in epithelial	95
Johns, Emma Investigating differential mechano-respetissue	onses across a multi-layered	96

Jovanic, Svetlana SPIM in vivo and in toto imaging for the reconstruction of multilevel dynamics	97
Kale, Girish Tensile and shear forces have opposite effects on E-cadherin levels during ectoderm morphogenesis	98
Kale, Sohan Emergent collective behaviors in interacting system of active crawlers	99
Kamaraj, Mageshi Cell dynamics and genetic regulation in the zebrafish hindbrain morphogenesis	100
Kamps, Dominic Reaction-diffusion based focusing of local cell contraction pulses	101
Khoromskaia, Diana Deformations of epithelia as active surfaces	102
Klipa, Olga Can mechanical stress explain recognition and elimination of mis-specified cells?	103
Koledova, Zuzana Mechanical force exerted by fibroblasts induces mammary epithelial folding	104
Kong, Deqing Cell quadruplets coordinate expansion and contraction to drive vertex resolution in epithelial morphogenesis	105
Kosodo, Yoichi How physiological tissue stiffness in brain regulates neural stem cell differentiation?	106
Kowalczyk, Izabela Integrity of the stem cell niche in the developing brain – mechanisms shaping the neural tube	107

Kreysing, Eva Influence of the mechanical environment on neuronal maturation	108
Krishna, Abhijeet Achieving Curvature from Flat Tissues	109
Ku, Seung-Yub Effects of 2D vs 3D in vitro culture conditions on differentiation of human embryonic stem cells into cardiomyocytes	110
Kuony, Alison Cell distribution in a context of epithelial tube and ductal compartment formation	111
Lee, Hsiao-Hui Defining force requirement of focal adhesion maturation and YAP nuclear translocation	112
Lenner, Nicolas Reverse time inference of developmental processes evolving towards target states	113
Loreau, Vincent Quantifying the impact of titin elasticity on sarcomere architecture during muscle development	114
Lu, Kun Progressive stretch promotes the maturation of human engineered heart tissue	115
Magali, Suzanne Mechanical impact of epithelial-mesenchymal transition on epithelial morphogenesis	116
Maiuri, Paolo The front-rear polarity of cell nucleus	117
Manning, Cerys Interplay between mechanical stimuli and cell fate protein expression dynamics in eye development and developmental disorders	118

Maroudas-Sacks, Yonit Actin organization as an active nematic and its role in morphogenesis in Hydra regeneration	119
Marshall, Abigail Investigating the biomechanical role of the surface ectoderm during Neural Tube Closure in normal and Grhl mutant mouse embryos	120
Martin-Blanco, Enrique Mechanical coordination directs tissue replacement during metamorphosis in drosophila	121
Méndez Acevedo, Kevin Manuel Mylk3 is a novel effector of the Planar Cell Polarity pathway.	122
Menon, Deepikaa Regulation of membrane scission in yeast endocytosis	123
Mercier, Barbara Mechanical effects on self-organization of differentiating cell colonies	124
Merks, Anne Planar Cell Polarity Signalling Affects Mechanosensitive Muscle Differentiation Program	125
Mirouse, Vincent Oriented basement membrane fibrils provide a memory for F-actin planar polarization via the Dystrophin-Dystroglycan complex during tissue elongation	126
Mirza, Waleed Ahmad Pattern formations in active nematic systems	127
Missirlis, Dimitris Cell Polarization is Governed by Substrate Viscosity and Fibronectin Adsorption Strength	128
Mogha, Pankaj Inter-cellular mechanical interaction via matrix reverses cell behaviour on soft substrates	129

Mukherjee, Abhishek The role of a-catenin in mechano-sensing of the ECM	130
Munoz, Jose Mechanics of cell intercalation in flat three-dimensional epithelia	131
Münster, Stefan External forces generated by the attachment between blastoderm and vitelline envelope affect gastrulation of insects	132
Nakaya, Yukiko Mesoderm cells collectively migrate in the form of dynamic meshwork during chick gastrulation	133
Naseri, Amirmasoud Presenter: Eskandari, Mahnaz Numerical Modeling of the Mechanical Properties of F-Actin Solutions To Be Used in Cancer Study	134
Natan, Sari Long-range mechanical coupling of cells in 3D Fibrous Gels	135
Obr, Adam The role of p21-activated kinases in adhesion structures of hematopoietic cells	136
Oliver De La Cruz, Jorge Presenter: Oliver De La Cruz, Jorge; Forte, Giancarlo	
Harnessing cell mechanosensing potential in regenerative medicine and tumor management	137
Padmanabhan, Krishnanand Thymosin B4 is essential for the establishment of planar cell polarity during epidermal development	138
Pai, Vaibhav Biophysical Basis of Teratogenesis and its Cure: A Computational Roadmap for Developmental Bioelectrics for Repair of Neural Defects in vivo	139
Paijmans, Joris How single cells contribute to changes in shape and curvature of developing tissues	140

Pantazis, Periklis GenEPi: Piezo1 based fluorescent reporter for visualizing mechanical stimuli with high spatiotemporal resolution	141
Park, Han-Jin Generation of hepatic organoids from human pluripotent stem cells	142
Pillai, Eva Mechanical regulation of chemical signalling in the developing brain.	143
Piscitello Gómez, Romina Elucidating the molecular mechanisms that determine epithelial viscoelasticity during morphogenesis	144
Ray, Poulomi Remodeling of Apical Junctions During Epithelial Morphogenesis in C. elegans	145
Roshan, Zahra The influence of cross-linker density on rheological properties of alginate bioink; an investigation	146
Rougerie, Pablo Curvature-dependent control of anisotropic growth at the tissue scale	147
Sánchez-Carranza, Oscar Physiological characterization of pathogenic PIEZO2 mutations	148
Sanketi, Bhargav D. Synchronizing midgut formation with the initiation of its leftward tilt	149
Sanson, Bénédicte Role of apical vertices and the adhesion molecule Sidekick in Drosophila axis extension	150
Schulz, Julia Plant cell wall integrity (CWI) maintenance from a biomechanical perspective	151

Sen, Ellora The role of Lamin A in YAP1 regulated	mitochondrial dynamics	152
Serna-Morales, Eduardo Basement Membrane dynamics induce Central Nervous System in Drosophila	Presenter: Serna-Morales, Eduardo; Marcotti, Stefania es compaction of the embryonic	153
Shamipour, Shayan Bulk actin dynamics drive phase segre	gation in zebrafish oocytes	154
Sharma, Swati Spatiotemporal regulation of contractile cellularization	e ring size in Drosophila	155
Sharrock, Tom Investigating the cell surface code for oin Drosophila embryos	compartment boundary formation	156
Simonovic, Julijana Mathematical commentary of external models	excitation in bone cell population	157
Singaraju, Gayathri S. Molecular mechanism strong cell-cell a Cadherin-23.	dhesion mediated by	158
Soans, Karen Investigating the role of the extracellula morphogenesis	ır matrix in optic cup	159
Sokleva, Vanesa Impact of mechanical signals in human	embryonic lung differentiation	160
Sorrell, Emma Notochord morphogenesis as a physic	Presenter: Lubkin, Sharon al control problem	161
Souchaud, Alexandre Mapping the mechanical stresses in liv	ing tissues in vitro and in vivo	162

Staddon, Michael Adaptive length control of epithelial cell junctions	163
Stern, Tomer Automated mapping of multi-cellular motifs during tissue morphogenesis	164
Tada, Masazumi Coordination of the interface between two populations during cell extrusion	165
Theis, Sophie Modelling fold formation in Drosophila Melanogaster.	166
Thompson, Barry Role of mechanotransduction via YAP/TAZ during tissue development and regeneration	167
Tiwari, Prabhat The Mechanobiology of Drosophila Ventral Nerve Cord Condensation	168
Tobias Santos, Vitória Divergent segmentation hierarchy underlies embryo patterning in ants	169
Toyama, Yusuke Mechanically induced compensatory proliferation	170
van der Stoel, Miesje Stiffness-induced DLC1 controls endothelial dynamics by modulating contractile forces	171
Varner, Victor An FGF-10-induced buckling mechanism specifics the formation of ectopic buds in cultured embryonic lung explants	172
Vasilev, Dmitri Maternal hypoxia on 14th day of pregnancy disturbs the mechanisms of the development of brain cortex in the offsprings	173

Vetter, Roman The origin of Aboave-Weaire's law in epithelial tis	ssue	174
Vianello, Stefano Studying the mechanobiology of early mammalia self-organising embryonic organoids	an development using	175
Vignes, Hélène Cellular and molecular mechanisms of atrioventr convergence during zebrafish heart morphogene		176
Vinarsky, Vladimir Mechanotransducer YAP1 regulates cardiomyoc changes in calcium handling apparatus.	yte contractility through	177
Wittbrodt, Joachim Presente Deficient Protein O-mannosylation Affects Signal Vertebrates	er: Cornean, Alex Iling Pathways In	178
Worzfeld, Thomas Semaphorin-plexin signalling controls epithelial of	cell adhesion	179
Xia, Peng Lateral inhibition in cell specification mediated by modulating TAZ activity	y mechanical forces	180
	er: Knaut, Holger; Yamaguc	hi,
Naoya Generation of Traction Force by Collectively Migi	rating Cells in vivo	181
Yamashita, Satoshi Finding homogeneous regions inside a developir	ng heterogeneous tissue	182
Yanakieva, Iskra Tissue and cell shape determine actin-depender mechanisms in neuroepithelia	nt nuclear migration	183
Zahler, Stefan Cell based strain stiffening of a non-fibrous matroprinciple for morphogenesis	ix as organizing	184

Zimm, Roland Modeling biomechanics during shark odontode morphogenesis	185
Jang, Hwanseok Morphological differentiation and physical interaction of cell clusters by concentration gradient of growth factor	186
Priya, Rashmi Mechanical symmetry breaking drives fate specification during heart morphogenesis	187
Krüger, Daniel Contraction of cortical actomyosin networks driven by myosin activation controls cell shape changes and tissue morphogenesis during animal development	188